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Abstract

We study the global dynamics of parametrically excited pipes conveying fluid near a 0 : 1 resonance. A major goal of

the analysis is to understand how energy may be transferred from the high-frequency mode to the low-frequency mode

in these systems. We study the bifurcations of supported pipes conveying fluid, focusing on the subharmonic resonance

case. Finally, using recently developed global bifurcation methods, we detect the presence of orbits which are

homoclinic to certain invariant sets for the resonant case. In the dissipative case, we are able to identify conditions

under which a generalized Šilnikov orbit would exist. In certain parameter regions, we prove that such orbits exist

which are homoclinic to fixed points on the slow manifold, leading to chaotic dynamics in the system. These orbits

provide the mechanism by which energy transfer between modes may occur.

r 2005 Published by Elsevier Ltd.
1. Introduction

In this paper, we extend the study of McDonald and Namachchivaya (2005) on the dynamics of supported pipes

conveying pulsating fluid to examine their global bifurcations close to a 0 : 1 resonance. The term global bifurcation

refers to a qualitative change in the system dynamics that cannot be understood using local bifurcation theory.

Examples of such phenomena include the creation of homoclinic or heteroclinic orbits, or the creation of new periodic

orbits where no fixed point existed. Although global phenomena can sometimes be predicted from a local analysis [see,

for example, the analysis of the double zero eigenvalue case in Guckenheimer and Holmes (1983)], local bifurcation

methods are not sufficient to describe these bifurcations.

When the pipe oscillates, the flow of fluid through the pipe introduces a gyroscopic or Coriolis force which is

proportional to the fluid velocity. For small flow velocities, there is little coupling between the fluid and the structure.

Centrifugal forces in the pipe act in much the same way as compressive forces do in a beam. Hence, increasing the fluid

velocity decreases the effective stiffness of the pipe system, and may lead to buckling, also known as divergence. In the

absence of damping, the Coriolis forces act to re-stabilize the pipe after divergence before flutter finally destabilizes the

pipe. For an undamped system with no external tension or gravity, the classical result is that divergence of the first

mode occurs at a dimensionless critical velocity of uc ¼ p.
e front matter r 2005 Published by Elsevier Ltd.
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In this paper, we study the global bifurcations of simply supported damped pipe systems near the critical

velocity uc, when the fluid velocity is also pulsating. The goal of our analysis will be to understand the effect

that the forcing and damping has on this gyroscopic system in the neighborhood of the 0 : 1 critical point. In many

dynamical systems with homoclinic or heteroclinic orbits between fixed points, chaotic dynamics may be

present. Several global bifurcation methods may be used to detect chaos in systems that possess homoclinic/

heteroclinic orbits. One method, due to Melnikov (1963), and described in Guckenheimer and Holmes (1983) and

Wiggins (1988), provides conditions under which a homoclinic orbit to a saddle node in the unperturbed

system may break under perturbation, allowing the stable and unstable manifolds of the saddle node to intersect

transversally. Such intersections may lead to global bifurcations and chaos in the system. A second method, described

by Kovac̆ic̆ and Wiggins (1992), determines conditions under which a Šilnikov-type homoclinic orbit may be

present in a perturbed resonant system. These Šilnikov orbits have two time scales, spending a long time near

a slow manifold before making a fast pulse and returning to the same slow manifold or another slow manifold.

Šilnikov (1965) showed that perturbation of these orbits might lead to chaotic dynamics in the system. A third method,

due to Haller and Wiggins (1995) detects similar Šilnikov-type orbits which made several quick pulses away

from the slow manifold. Šilnikov’s result can also be applied to these generalized Šilnikov orbits, giving another tool

for the detection of chaos in the system. We will investigate the possibility of chaotic dynamics in these systems using

these methods.

Since the latter two of these methods involve an exchange of energy between the modes of a system, these

methods may be useful in describing the energy transfer that we expect to occur between the two resonant

modes in our problem. The primary method we use is the method to detect multi-pulse homoclinic orbits, and

we apply this method to the system forced at subharmonic resonance. We first determine conditions under

which the system possesses multi-pulse orbits that are homoclinic to a slow manifold in the system. We then

determine parameter regions where the damped system has orbits which are homoclinic to a saddle focus

fixed point. The presence of such homoclinic orbits leads to chaotic behavior in the system through Smale

horseshoes. Finally, we try to give some physical interpretations to these global phenomena for the physical systems

considered.

There have been many applications of the Šilnikov and multi-pulse methods to study the global dynamics of

engineering systems, and we mention a few here. The first application of the Šilnikov method was in the study

of the nonlinear Schrödinger (NLS) equations by Kovac̆ic̆ and Wiggins (1992). Feng and Sethna (1993) found

single pulse Šilnikov orbits for thin parametrically excited plates. Tien et al. (1994a, b), and Malhotra and

Namachchivaya (1995) found single pulse Šilnikov orbits for the forced motion of shallow arches and suspended

elastic cables. Kovac̆ic̆ and Wettergren (1996) found single and multi-pulse methods in resonantly driven

coupled pendula. The first application of the multi-pulse method was by Haller and Wiggins (1995) to study the

NLS equations. Haller (1998, 1999) gives several example problems using this method, including a forced beam,

resonant surface wave interactions, and a nonlinear vibration absorber. Malhotra and Namachchivaya (1995) located

single and multi-pulse orbits in the transverse motion of a spinning disk, using both the Šilnikov and multi-pulse

techniques.

In Section 2, we present the equations of motion in the Hamiltonian form as in McDonald and Namachchivaya

(2005) and the normal form for the pipe system near the critical point at which the system possesses a nonsemisimple

double zero eigenvalue. In Section 3, we focus on the subharmonic resonance case, since the global bifurcation methods

we use are not applicable to the combination resonance case. The geometric structure of the unperturbed integrable

Hamiltonian problem is used to develop an appropriate set of coordinates for studying the perturbed problem. After

obtaining detailed information on the nature of the unperturbed system, in Section 4 we use three methods called the

Melnikov method, the Šilnikov method, and the multi-pulse method to detect the presence of chaotic dynamics in the

system studied. Finally in Section 5, we summarize the results and interpret them in terms of the physical motion of pipe

conveying pulsating fluid.
2. Formulation

We shall first briefly derive the ODEs for the parametrically excited pipe system. We include the effects of

nonlinearities and damping, as well as a time-dependent fluid velocity. The Hamiltonian equations of motion are given

by McDonald and Namachchivaya (2005):

_x ¼ Axþ JDH1ðxÞ þ �fhð _f ðtÞDs þ f ðtÞDc � z�Dd Þgx� �z
�F ðxÞ, (1)
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where x ¼ ½q1 q2 p1 p2�
T, and

A ¼

0 8
3
Mru0 1 0

�8
3
Mru0 0 0 1

�ō2
1 0 0 8

3
Mru0

0 �ō2
2 �8

3
Mru0 0

2
66664

3
77775, (2)

F ðxÞ ¼

0

0
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" #
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We specify the form of the forcing as f ðtÞ ¼ cos nt and the nonlinear Hamiltonian term H1ðq; pÞ is given by

H1ðq; pÞ ¼
kp4

4
ðq21 þ 4q22Þ

2, (6)

and the two quantities ō1 and ō2 are defined as

ō2
1 ¼ p2ðp2 � ðu20 � T̄ÞÞ þ 64

9 M2
r u20 ¼ o2

1 þ g221,

ō2
2 ¼ 4p2ð4p2 � ðu20 � T̄ÞÞ þ 64

9
M2

r u2
0 ¼ o2

2 þ g221.

Eq. (1) represents the equations of motion (Hamiltonian form) for a two-mode truncation of the pipe conveying fluid.

The eigenvalues of A are

�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64
9

M2
r u20 þ

1
2
ðō2

1 þ ō2
2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
128
9

M2
r u20ðō

2
1 þ ō2

2Þ þ
1
4
ðō2

1 � ō2
2Þ

2
qr

.

We wish to study the system when it possesses a pair of zero eigenvalues. For simplicity, we will describe this motion for

T̄ ¼ 0. For u0 ¼ 0, the eigenvalues are at f�ip2;�4ip2g. As u0 is increased, both pairs of eigenvalues move towards the

origin along the imaginary axis, until u0 ¼ p, when the eigenvalues from the first mode become zero. These eigenvalues

split, and move onto the real axis. Eventually, this first mode pair of eigenvalues reverses its direction, and moves back

towards the origin. What happens next depends on the value of Mr. If Mroð3
ffiffiffi
3
p

=32Þp, then the eigenvalues from the

second mode reach zero at u0 ¼ 2p, split, and move onto the real axis. These eigenvalues eventually coalesce along the

real axis, and leave that axis. For Mr4ð3
ffiffiffi
3
p

=32Þp, the eigenvalues from the first mode reach zero first at u0 ¼ 2p, re-
stabilizing that mode. The two pairs of eigenvalues eventually coalesce along the imaginary axis, and split, indicating

the onset of flutter. These two cases are shown in McDonald and Namachchivaya (2005).

Thus, there are two critical flow velocities at which the system has a double zero eigenvalue, u0 ¼ p and 2p. If tension
is present in the system, the corresponding critical flow velocities are u0 ¼ ðp2 þ T̄Þ1=2 and u0 ¼ ð4p2 þ T̄Þ1=2. A key idea

here is to calculate the normal form for the system at these critical flow velocities. The normal form near u0 ¼ uc
0

was derived in McDonald and Namachchivaya (2005) using the methods developed in McDonald et al. (1999)
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and is given as

_w1 ¼ �
i

2
ðw1 � w̄1Þ þ

ib1d
2
ðw1 þ w̄1Þ þ 4ia1ðw1 þ w̄1Þ

3
þ 2ia2ðw1 þ w̄1Þw2w̄2 þ z�d1w1 þ s1w2 � s̄1w̄2

þ z�½f1w1w2w̄2 þ f2w1ðw1 þ w̄1Þ
2
þ f3ðw1 þ w̄1Þw2w̄2 þ f4ðw1 þ w̄1Þ

3
�,

_w2 ¼ � ilL1w2 þ ib2dw2 þ ia2ðw1 þ w̄1Þ
2w2 þ 2ia3w2

2w̄2

þ z�d2w2 � s̄1ðw1 þ w̄1Þ þ s4w̄2 þ z�½f5w2
2w̄2 þ f6ðw1 þ w̄1Þ

2w2�, ð7Þ

where the coefficients in terms of the original coefficients are given in McDonald and Namachchivaya (2005). We note

that the equations for the two cases (subharmonic and combination resonances) are now identical, except for the

forcing terms. The unperturbed Hamiltonian is given by

H ¼
i

4
ðw1 � w̄1Þ

2
þ

ib1d
4
ðw1 þ w̄1Þ

2
� iL1ð1þ lÞw2w̄2 þ ib2dw2w̄2

þ ia1ðw1 þ w̄1Þ
4
þ ia2ðw1 þ w̄1Þ

2w2w̄2 þ ia3w2
2w̄2

2.

The geometric structure of the unperturbed integrable Hamiltonian problem is used to develop an appropriate set of

coordinates for studying the perturbed problem. The fast motions (Hamiltonian) in (7) can be effected by appropriately

introducing a set of new co-ordinates having cyclic character, if such can be found. To this end, it is convenient to

transform the equations of motion to action-angle form, using the transformation

w1 ¼
ffiffiffiffiffiffiffi
2I1

p
eiy1 ; w2 ¼

ffiffiffiffiffiffiffi
2I2

p
eiy2

This transformation is symplectic with multiplier 2i. For both cases, the unperturbed Hamiltonian in action-angle

coordinates is given by

Hðy1; y2; I1; I2Þ ¼
1

2i
Hðz1ðy; IÞ; z2ðy; IÞÞ

¼ � I1 sin
2 y1 þ b1dI1 cos

2 y1 þ ðbd2 � lL1ÞI2 þ 32a1I21 cos
4 y1 þ 8a2I1I2 cos

2 y1 þ 2a3I22.

For the combination resonance case, we obtain the equations

_y1 ¼ � sin2 y1 þ b1d cos
2 y1 þ 64a1I1 cos

4 y1 þ 8a2I2 cos
2 y1

þ 2

ffiffiffiffiffi
I2

I1

r
cos y1 ðsr

1 sin y2 þ si
i cos y2Þ þ z�½4fi

3I2 cos
2 y1 þ 16fi

4I1 cos
4 y1�,
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2 y1 þ 4a3I2 � 2

ffiffiffiffiffi
I1

I2

r
cos y1ð�sr

1 sin y2 � si
1 cos y2Þ þ 8z�fi

6I1 cos
2 y1,

_I1 ¼ 2ð1þ b1dÞI1 cos y1 sin y1 þ 128a1I21 cos
3 y1 sin y1 þ 16I1I2 cos y1 sin y1

þ 4
ffiffiffiffiffiffiffiffiffi
I1I2

p
sin y1ðsr

1 sin y2 þ si
1 cos y2Þ þ 2z�d1I1 þ z�½4f1I1I2 þ 16f2I21 cos

2 y1

þ 8fi
3I1I2 cos y1 sin y1 þ 32fi

4I21 cos
3 y1 sin y1�,

_I2 ¼ 2z�d2I2 þ 4
ffiffiffiffiffiffiffiffiffi
I1I2

p
cos y1ð�sr

1 cos y2 þ si
1 sin y2Þ þ z�½4f5I22 þ 16fr

6I1I2 cos
2 y1�; ð8Þ

and for the subharmonic resonance, we obtain the equations

_y1 ¼ � sin2 y1 þ b1d cos
2 y1 þ 64a1I1 cos

4 y1 þ 8a2I2 cos
2 y1 þ z�½4fi

3I2 cos
2 y1 þ 16fi

4I1 cos
4 y1�,

_y2 ¼ b2d� lL1 þ 8a2I1 cos
2 y1 þ 4a3I2 þ si

4 cos 2y2 � sr
4 sin y2 þ 8z�fi

6I1 cos
2 y1,

_I1 ¼ 2ð1þ b1dÞI1 cos y1 sin y1 þ 128a1I21 cos
3 y1 sin y1 þ 16I1I2 cos y1 sin y1

þ 2z�d1I1 þ z�½4f1I1I2 þ 16f2I21 cos
2 y1 þ 8f3I1I2 cos y1 sin y1 þ 32f4I21 cos

3 y1 sin y1�,
_I2 ¼ 2z�d2I2 þ 2sr

4I2 cos 2y2 þ 2si
4I2 sin y2 þ z�½4f5I22 þ 16fr

6I1I2 cos
2 y1�. ð9Þ

The generalized coordinates are y1; y2ð Þ, with corresponding generalized momenta I1; I2ð Þ.
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3. Equations in standard form: subharmonic resonance case

The goal of our analysis will be to understand the effect that the forcing and damping has on this gyroscopic system

in the neighborhood of the 0 : 1 critical point. We focus on the subharmonic resonance case, since the global bifurcation

methods we will use in Section 4 are not applicable to the combination resonance case.

We now transform the equations of the first mode into a rectangular coordinate system in (9) to avoid singularities

associated with I1 ¼ 0. We make the transformation

x ¼
ffiffiffiffiffiffiffi
2I1

p
sin y1; y ¼

ffiffiffiffiffiffiffi
2I1

p
cos y1; I ¼ I2; y ¼ y2.

Hence, the equations that we need are given in coordinates x; y;f; Ið Þ in the form

_x ¼ b1dyþ 32a1y3 þ 8a2Iyþ �fzd1xþ z½2f1Ixþ 4f2xy2 þ 4f3Iyþ 8f4y3�g,

_y ¼ xþ �fzd1yþ z½2f1Iyþ 4f2y3�g,

_I ¼ �f2zd2I þ 2Is4 sin 2fþ z½4f5I2 þ 8fr
6Iy2�g,

_f ¼ b2d� lL1 þ 4a2y2 þ 4a3I þ �fs4 cos 2fþ 4z�fi
6y2g, ð10Þ

where we have also made the substitutions

si
4 cos 2y2 � sr

4 sin 2y2 ¼ s4 cos 2f

with

f ¼ y�
Ds

2
; s4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsr

4Þ
2
þ ðsi

4Þ
2

q
; cos Ds ¼

si
4

s4
.

These equations have the standard form

_x ¼ JDxH0ðx; IÞ þ �fJDxH1ðx; I ;f; �Þ þ f x
ðx; I ;f; �Þg,

_I ¼ �f�DfH1ðx; I ;f; �Þ þ f I
ðx; I ;f; �Þg,

_f ¼ DI H0ðx; IÞ þ �fDI H1ðx; I ;f; �Þ þ f f
ðx; I ;f; �Þg, ð11Þ

where x ¼ ½x y�T 2 R2, I 2 R, y 2 S1. The unperturbed Hamiltonian H0 and perturbed Hamiltonian H1 in these hybrid

coordinates for this system are given by

H0 ¼ �
1
2x

2 þ 1
2b1dy2 þ ðb2d� lL1ÞI þ 8a1y4 þ 4a2Iy2 þ 2a3I2,

H1 ¼ s4I cos 2f,

and the dissipative perturbations are given by

f x
¼

zd1xþ 2zf1Ixþ 4zf2xy2 þ 4zfi
3Iyþ 8zfi

4y3

zd1yþ 2zf1Iyþ 4zf2y3

" #
,

f I
¼ 2zd2I þ 4zf5I2 þ 8zfr

6Iy2,

f f
¼ 4zfi

6y2.

The perturbation terms include the effects of both Hamiltonian and non-Hamiltonian perturbations. These

perturbation terms (dissipative and forcing) can be written in more compact form as

gx ¼ JDxH1 þ f x; gI ¼ �DfH1 þ f I ; gf ¼ DI H1 þ f f.
3.1. Unperturbed dynamics

We note immediately that the unperturbed system, obtained by letting e! 0, is integrable, since it possesses two

constants, the unperturbed Hamiltonian H0 and the action coordinate I. We shall make a series of investigations about

the unperturbed system.
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3.1.1. Dynamics in x–y plane

First, we discuss the dynamics in the x–y plane for a given value of I. These dynamics are described by the equations

_x ¼ b1dyþ 32a1y3 þ 8a2Iy; _y ¼ x.

For the unperturbed Hamiltonian system in the four-dimensional phase space, we have _I ¼ 0, so that I is a constant of

the system. We can therefore define a constant function, HR x; y; Ið Þ by

HRðx; y; IÞ ¼ �
1

2
x2 þ

b1d
2

y2 þ 8a1y4 þ 4a2y2I .

In the x–y plane, we see that there is a trivial fixed point, denoted E0 at ðx; yÞ ¼ ð0; 0Þ. To study the stability of this fixed

point, we first determine the eigenvalues of E0, which are given by

lE0
1;2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1dþ 8a2I

p
.

Thus, E0 is stable (imaginary eigenvalues) for b1do� 8a2I , while the system is unstable (real eigenvalues) for

b1d4� 8a2I . Since b140 and a2o0, we have the following stability conditions for E0:

E0 stable: do
8ja2jI
b1

;

or, in terms of I,

E0 stable: I4
b1d
8ja2j

.

The stability of E0 changes at d ¼ 8ja2jI=b140. In terms of I, the stability changes at I ¼ b1d=ð8ja2jÞ which is positive if

d40. However, if do0, the stability of E0 does not change for a positive value of I, in which case the trivial fixed point

E0 does not bifurcate.

The system has another set of fixed points, denoted E�1 , and given by

Eþ1 ¼ ð0; y0Þ; E�1 ¼ ð0;�y0Þ,

where

y0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1dþ 8a2I

32ja1j

s
.

These fixed points E�1 only exist for ðb1dþ 8a2IÞ=ð32ja1jÞ40, or b1dþ 8a2I40. Thus, we have the following existence

criteria for E�1 :

E�1 exists: d4
8ja2jI
b1

;

and in terms of I,

E�1 exists: Io
b1d
8ja2j

.

Comparing these with the stability conditions for E0, we see that E�1 only exist when E0 is unstable. We again check the

stability of these fixed points by calculating eigenvalues at the fixed points E�1 :

l
E1;2
1;2 ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðb1dþ 8a2I2Þ

p
.

So E�1 are stable if b1dþ 8a2I240. The stability criteria for E�1 are then

E�1 stable: d4
8ja2jI
b1

;

and in terms of I,

E�1 stable: Io
b1d
8ja2j

.
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Thus, we see that E�1 , when they exist, are unstable, and have the opposite stability as E0. Thus, depending on the

sign of d, the following two phase portraits are possible:
(i)
 do0: E0 is stable for I40. Fixed points E�1 do not exist. Thus, for all I40, the phase portrait simply consists of

periodic orbits centered at E0.
(ii)
 d40: E0 is unstable for 0oIob1d=ð8ja2jÞ and stable for I4b1d=ð8ja2jÞ. Two branches of fixed points, E�1 exist for

0oIob1d=ð8ja2jÞ. These two branches bifurcate from E0 at I ¼ b1d=ð8ja2jÞ and the bifurcating branches open

downwards. Thus, there are two possible planar phase portraits, depending on the value of I:

(a) 0oIob1d=ð8ja2jÞ: The unstable saddle point E0 is connected to itself by a pair of homoclinic orbits, each of

which encircles one of the stable centers E�1 . These centers E�1 are surrounded by a continuous family of

periodic orbits extending to the homoclinic orbit. Surrounding both homoclinic orbits is a continuous family of

larger periodic orbits. The phase portrait for this case is given in Fig. 1.

(b) I4b1d=ð8ja2jÞ: The phase portrait simply consists of a continuous family of periodic orbits centered around the

stable center E0.
A richer variety of phase portraits and orbit behavior is possible if we do not restrict the coefficients aio0. However,

since this restriction is present in the physical example considered, we only consider this case. The condition for

homoclinic behavior to be present, d40, corresponds to the bifurcation parameter (flow velocity) being above the

critical value of that parameter.

Hence, the system (11) has a saddle fixed point, denoted by ~x0ðIÞ ¼
def
ð0; 0Þ. More precisely, for each value of I in some

range I 2 Ia; Ibð Þ, the two-dimensional system on the x-plane has a saddle fixed point. In the four-dimensional phase

space (i.e. including the I and y coordinates), these fixed points extend to a two-dimensional normally hyperbolic

manifold P0, defined by

P0 ¼ fðx; I ;fÞjx ¼ ~x0ðIÞ; IaoIoIb; 0pfo2pg ¼ fðx; y; I ;fÞjx ¼ y ¼ 0g.

3.1.2. Homoclinic orbits

For each value of I 2 ðIa; IbÞ, the system (11) has a homoclinic orbit, xh t; Ið Þ, connecting the saddle fixed point to

itself. In the four-dimensional phase space, these homoclinic orbits extend to a three-dimensional homoclinic manifold,

defined by

G ¼ fðx; I ; yÞjx ¼ xhðt; IÞ; IaoIoIb; y
h
ðt; I ; y0Þg.

This manifold contains the stable and unstable manifolds of the invariant manifold P0. These manifolds intersect

nontransversally to form the homoclinic manifold.

We next determine the homoclinic orbits in the x–y plane. The homoclinic orbits only appear for the cases where

a1o0. The Hamiltonian function H0 will be constant on the homoclinic orbit, as will the coordinate I. We therefore

define a constant function

HRðx; y; IÞ ¼ �1
2
x2 þ 1

2
b1dy2 þ 8a1y4 þ 4a2Iy2.

Essentially, we have just subtracted the constant terms from the unperturbed Hamiltonian in order to obtain a simpler

constant function HR. We note that since ð0; 0Þ is on the orbit and HRð0; 0Þ ¼ 0, that HR ¼ 0 on the entire homoclinic
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orbit. This observation gives us a constant with which we may solve for the homoclinic orbit in the x–y plane. We

therefore solve the equation

HRð0; 0Þ ¼ HRðxhðtÞ; yhðtÞÞ,

where ðxhðtÞ; yhðtÞÞ is a time-parametrized expression for the homoclinic orbit. We obtain

0 ¼ �
1

2
x2 þ

b1d
2

y2 þ 8a1y4 þ 4a2y2I2.

Solving this equation for x, and substituting this into the equation for _y yields

_y ¼ þy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay2 þ b

p
for first and third quadrants;

_y ¼ �y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ay2 þ b

p
for second and fourth quadrants.

The time-parameterized expressions for these orbits (in each of the four quadrants) are obtained from the above

differential equations as

yh
1ðtÞ ¼

ffiffiffiffiffiffiffi
�

b

a

r
sech

ffiffiffi
b
p

t; xh
1ðtÞ ¼ yh

1ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayh

1ðtÞ þ b

q
; �1oto0,

yh
2ðtÞ ¼

ffiffiffiffiffiffiffi
�

b

a

r
sech

ffiffiffi
b
p

t; xh
2ðtÞ ¼ �yh

2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayh

2ðtÞ þ b

q
; 0oto1,

yh
3ðtÞ ¼ �

ffiffiffiffiffiffiffi
�

b

a

r
sech

ffiffiffi
b
p

t; xh
3ðtÞ ¼ yh

3ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayh

3ðtÞ þ b

q
; �1oto0,

yh
4ðtÞ ¼

ffiffiffiffiffiffiffi
�

b

a

r
sech

ffiffiffi
b
p

t; xh
4ðtÞ ¼ �yh

4ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ayh

4ðtÞ þ b

q
; 0oto1,

where the coefficients a; bð Þ are defined by

a ¼ 16a1o0; b ¼ 8a2I þ b1d. (12)

These orbits only exist if E0 is unstable, i.e. b1dþ 8a2I40.

We also need to solve for fh
ðtÞ, as it will be required in later calculations. We have

_y ¼ ðb2d� lL1 þ 4a3IÞ þ 4a2y2 ¼ oA þ 4a2y2,

where the first three terms on the right-hand side of this equation are constant along the homoclinic orbit, and therefore

have been replaced by the constant oA. Solving this equation, we find the solution for the angle fðtÞ along the

homoclinic orbit as

fh
ðtÞ ¼ oAtþ

4
ffiffiffi
b
p

a2
a

tanh
ffiffiffi
b
p

t, (13)

where oA ¼ b2d� lL1 þ 4a3I . We will be most interested in the change in phase, Dy, of the angle y along the

homoclinic orbit.

3.2. Dynamics on invariant plane

The dynamics on the manifold P0 can be characterized by one of two distinct assumptions. These assumptions

involve the presence of a resonance on the manifold P0. Thus, we look at the dynamics of the system on the invariant

plane, defined by

P0 ¼ fðx; y; I ;fÞjx ¼ y ¼ 0g,

which is invariant for any value of �. The unperturbed flow on P0 is given by

_I ¼ 0,

_f ¼ b2d� lL1 þ 4a3I ¼ 4a3 I �
lL1 � b2d

4a3

� �
¼ DI H0ð ~x0ðIÞ; IÞ. ð14Þ

For I ¼ I0 2 ðIa; IbÞ, there is a resonance, i.e. DI H0ð ~x0ðIÞ; IÞ ¼ 0. In this case, the resonant value of I ¼ I0 corresponds

to a circle of fixed points, denoted by C. The rest of the manifold P0 contains periodic orbits, unless there is more

than one resonance. In this case, we can define the quantity Df, the phase change in the angle y along the homoclinic
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orbit at I ¼ I0, by

Df ¼ fh
ðt ¼ þ1; I0;f0Þ � fh

ðt ¼ �1; I0;f0Þ.

Every fixed point on the resonant circle C is connected to another point on that resonant circle by a single-pulse orbit.

For our system, using Eq. (13), the phase shift in the angular coordinate f on that orbit is given by

Df ¼ fðþ1; I0;f0Þ � fð�1; I0;f0Þ ¼
8
ffiffiffi
b
p

a2
a
¼

a2
2a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b1dþ 8a2I0

p
, (15)

where a and b were defined in Eq. (12).

Thus, all orbits on this plane are circles or 1-tori. In particular, the orbit at I0 ¼ ðlL1 � b2dÞ=ð4a3Þ is a circle of fixed

points, often denoted by C. Of course, for a real physical system, we require that I40, so we must have that

I0 ¼ ðlL1 � b2dÞ=ð4a3Þ40 in order for C to exist. Since a3o0, and b240 for the pipe we have the following conditions

for the existence of C:

d4
lL1

b2
. (16)

If this condition is satisfied, the frequency _f vanishes at I ¼ I0. The fixed points at I ¼ I0 correspond to periodic

solutions with the same frequency as the forcing frequency. The dynamics in the I–f plane are illustrated in Fig. 2. In

addition, we need to check that the twist condition holds, that is,

D2
I H0ðPÞjI¼I0

¼ 4a3a0 (17)

holds at the resonant value of I ¼ I0. This condition assures that the frequency _y has opposite signs on either side of the

resonant value of I.

Next, we look at the eigenvalues of the system on the resonant circle C. The linearization of the system on C is

given by

0 b1dþ 8a2I0 0 0

1 0 0 0

0 0 0 4a3
0 0 0 0

2
6664

3
7775

with eigenvalues 0; 0;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8a2I0 þ b1dÞ

p
. Thus, the system has a pair of zero eigenvalues corresponding to directions in

the planeP0. If d48ja2jI0=b1, then each point on the resonant circle is unstable, with real eigenvalues (one positive, one

negative) in the directions transverse to the plane. This case is most important for our purposes, since it is the case in

which a homoclinic orbit occurs in the x–y plane. If do8ja2jI0=b1, then each point on the resonant circle is stable, with

pure imaginary eigenvalues in the directions transverse to the plane P0. We also note that for �40, the manifold P0

remains invariant.

If we substitute in the resonant value of I ¼ I0 into the condition above for a homoclinic orbit to occur, we obtain a

condition on d and l. This condition is given by using the fact that a3b1 � 2a2b2o0, see the discussion in McDonald
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and Namachchivaya (2005)

d4�
2ja2jlL1

ja3b1 � 2a2b2j
.

Combining this condition with the conditions for a resonant circle to exist, (16), we obtain a region in the d–l plane

where a resonant circle C exists in the invariant manifold, and an orbit homoclinic to that resonant circle exists in a

plane parallel to the x–y plane. The global analysis in this paper will apply to these regions. Typical regions are shown

for the pipe in Fig. 3.
3.3. Comparison to local analysis

Before continuing with the global analysis, we would like to compare the above results to the local results obtained in

McDonald and Namachchivaya (2005), and compare the solutions and structures found in each analysis. Since slightly

different scalings were used in these two analyses, the results will not correspond exactly. Also, the parameter d was

varied in the bifurcation diagrams in McDonald and Namachchivaya (2005), while d is considered fixed in the phase

portrait in Fig. 1. This difference makes it difficult to visualize the relationship between the local and global analyses.

For the local analysis, we found a first mode solution (in action-angle coordinates) which existed for d4z2d21=b1, and
was given by

I1 ¼
b1d

64ja1j
ð1þ Oðz2ÞÞ.

In the global analysis, the analogue of these first mode solutions would be center fixed points E�1 that exist at I ¼ 0 for

d40. These fixed points are given in action-angle coordinates by

I1 ¼
b1d

64ja1j
.

Also, note that I1 increases as d increases, as was the case for the local analysis. The difference between the two cases lies

in the fact that the damping has been scaled to be small in the global analysis, and hence does not enter into the

unperturbed dynamics.

Next, we found a pair of second mode solutions in the local analysis. These solutions were given by

I2 ¼
ðlL1 � b2dÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � z2d22

q
4a3

.
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The analogue for these solutions in the global analysis is the resonant circle of fixed points C that exists on the slow

invariant manifold P0 at

I2 ¼ I0 ¼
lL1 � b2d

4a3
.

Since forcing and damping have been scaled to be small in the global analysis, the two solutions from the local analysis

become one solution in the global analysis. Note that for the pipe, the resonant value I0 (the circle of fixed points)

increases as d increases, while for the shaft, I0 decreases as d increases. This behavior corresponds to the super- and

subcriticality of the second mode solutions for the pipe and shaft seen in the local analysis.

Finally, we found multi-mode solutions in the local analysis. These solutions connected the first mode solution to each

of the two second mode solutions. These solutions bifurcated from the first and second mode solutions when those

solutions became unstable due to the forcing. In the global analysis, since there is only one second mode solution, we can

expect that there will be only one multi-mode solution, which we will denote by MM. A rough analogue of these multi-

mode solutions are the two branches of fixed points E�1 ðI2Þ that connect the fixed points E�1 ðI2 ¼ 0Þ to the invariant

manifold P0. These branches intersect the invariant manifold P0 at I2 ¼ Ī2 ¼ b1d=ð8ja2jÞ. However, we must keep in

mind that d varies along MM. Thus, MM connects toP0 at I2 ¼ Ī2 at a value of d such that the circle of fixed points C is

also located at Ī2. Similarly, MM connects to E�1 ðI2 ¼ 0Þ at a different value of d. As mentioned earlier, it is difficult to

compare the local and global pictures, since we consider d fixed in the global analysis, but we vary d in the local analysis.

The local analysis will not be able to detect the more complicated global structures described later in this section.
4. Global dynamics near criticality

After obtaining detailed information on the nature of the unperturbed system, the next step is to examine the effects

of small perturbations (0o�51) on the unperturbed dynamics. Now, we study the global bifurcations of simply

supported damped pipe systems near the critical velocity uc, when the fluid velocity is also pulsating. In Nagata and

Namachchivaya (1998) for the autonomous case, the study of global solutions was made possible by assuming that the

dissipation and the symmetry-breaking effects were small compared to the basic nonlinear effects. Global solutions

were found using a Melnikov-type integrals to predict these global phenomena in a systematic manner. We extend this

study to cover nonautonomous case in this paper.

The three methods we shall use can be called the Melnikov method, the Šilnikov method, and the multi-pulse method.

The goal of each of these methods is to detect the presence of chaotic dynamics in the system studied. In the Melnikov

method, we attempt to detect the transversal intersections of the stable and unstable manifolds of a hyperbolic fixed

point. These intersections will lead to Smale horseshoes and chaotic dynamics. In the Šilnikov and multi-pulse methods,

we attempt to detect the presence of single or multi-pulse orbits which are homoclinic to an equilibrium on the slow

manifold. By applying Šilnikov’s theorem, the presence of these orbits can be shown to lead to chaotic dynamics in the

system. The existence of chaotic invariant sets near slow manifolds was first considered by Kovac̆ic̆ and Wiggins (1992).

However, their formulation neglects one technical condition, which is filled in by Haller (1999), who also provides a

review of much of the work in this area, and describes the multi-pulse method in some detail.

4.1. Non-resonant case

There is no resonance on the manifold P0, that is,

DI H0ð ~x0ðIÞ; IÞ ¼ 4a3 I �
lL1 � b2d

4a3

� �
a0

for all values of I in a region ðIc; Id Þ � ðIa; IbÞ that does not contain the resonant value of I ¼ I0. In this case, the

manifoldP0 is a plane of periodic orbits (or 1-tori) with frequency O ¼ DI H0ð ~x0ðIÞ; IÞ, parameterized by the coordinate

I. We first note that for small perturbations, the manifold P0 will persist, along with its stable and unstable manifolds.

However, in general, the homoclinic manifold will break, and the stable or unstable manifolds may or may not intersect.

The manifold P0 will perturb to a slow manifold P�, given by

P� ¼ fðx;f; IÞjx ¼ ~x0ðIÞ þ � ~x1ðI ;f; mÞ þ Oð�2Þ; ~IaoIo ~Ib;f 2 ð0; 2pÞg. (18)

The perturbation ~x1 can be calculated from the equation

�ðDy ~x1ÞðDI H0Þ � JD2
xH0 ~x1 ¼ DI ~x0gI � gx. (19)
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The dynamics on the manifold P0 also undergoes changes due to the perturbation. The equations on P�, to leading

order,

_I ¼ �gI ð ~x0ðIÞ; I ; y; m; 0Þ þ Oð�2Þ,

_y ¼ DI H0ð ~x0ðIÞ; IÞ þ Oð�Þ

are identical to the equations on the unperturbed manifold P0. However, on the perturbed manifold, P�, nearly all of

the periodic orbits are destroyed, since _Ia0.
4.1.1. Melnikov method

If the system (14) does not possess a resonance, then we may apply the Melnikov method. To apply this method, we

need to determine if any periodic orbits from P0 persist on the perturbed manifold. To this end, we can study the

averaged system on P�. Hence, we need to find a fixed point for the averaged system

_̄I ¼ �GðIÞ,

where

GðIÞ ¼
1

2p

Z 2p

0

gI ð ~x0ðIÞ; I ; y; m; 0Þdy.

For our system, this averaged system becomes

_̄I ¼ 2zd2I þ 4zf5I2,

which has fixed points given by I ¼ 0 and �d2=2f5. However, I ¼ 0 is only on the boundary of the homoclinic

manifold, and the second fixed point is not stable. Therefore, the perturbed system does not possess any stable periodic

orbits on P�, and we cannot apply the Melnikov method here. Thus, the nonresonant system is not amenable to the

global perturbation methods we have discussed. We therefore proceed to study the resonant case.
4.2. Resonant case

Again, we want to describe the effect of the perturbations on the resulting dynamics. Since the twist condition (17)

holds, the frequency _y has opposite signs on either side of the resonant value of I. For this case, the invariant manifold

P0 persists. As in the nonresonance case, for the resonance case the manifold P0 will perturb to a slow manifold P�,

given by Eq. (18).

The dynamics on the manifoldP0 undergoes a drastic change when the perturbation is added. To study the dynamics

in a neighborhood of the resonance, we make a transformation that ‘‘blows up’’ the resonance-region. Hence, we make

the standard coordinate transformation

I ¼ I0 þ
ffiffi
�
p

Z; f ¼ f,

and rescale time by t ¼
ffiffi
�
p

t. The new equations in this resonance region are given by

Z0 ¼ 2s4I0 sin 2fþ ð2zd2I0 þ 4zf5I20Þfþ
ffiffi
�
p

GðZ;f; mÞ þ Oð�Þ,

f0 ¼ 4a3Zþ
ffiffi
�
p

F ðZ;f; mÞ þ Oð�Þ,

where

G ¼ ð2s4 sin 2fþ 2zd2 þ 8zf5I0ÞZ; F ¼ s4 cos 2f, (20)

and where all functions are evaluated at ðx; I ;f; m; �Þ ¼ ð ~x0ðI0Þ; I0;f; m; 0Þ. One advantage of working in these local

coordinates around the resonance is that the equations are Hamiltonian at leading order, i.e.

Z0 ¼ 2s4I0 sin 2fþ ð2zd2I0 þ 4zf5I20Þf ¼ �DfH,

f0 ¼ 4a3Z ¼ DZH, ð21Þ

where

H ¼ 2a3Z2 þ s4I0 cos 2f� ð2zd2I0 þ 4zf5I20Þf.
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We note that when damping is present, za0, the system is only locally Hamiltonian, since the function H is not

periodic in f, and hence is not single valued for the leading order flow. Thus, to leading order, the dynamics near the

resonance is locally Hamiltonian, even if damping is present in the system.

4.2.1. Šilnikov method

We want to determine the existence of Šilnikov orbits, that is, orbits which are homoclinic to the sink p�. For such

orbits to exist, we need to satisfy two conditions: a Melnikov-type condition and a phase condition.

We begin by studying the dynamics on the invariant manifold P0, which are described by Eqs. (21). Due to the p-
symmetry of the equations, we need only look at the dynamics in ð�p=2; p=2Þ. We can obtain two fixed points for the

unperturbed system, given by

pc ¼ ðZc;fcÞ ¼ 0;
1

2
sin�1

zd2 þ 2zf5I0

hs4

� �
,

ps ¼ ðZs;fsÞ ¼ 0;
p
2
�
1

2
sin�1

zd2 þ 2zf5I0

hs4

� �
.

By examining, the stability of these two fixed points, we can determine that the first one represents a stable center-type

fixed point, while the second represents an unstable saddle-type fixed point. When there is no damping in the system, the

saddle points are at f ¼ �p=2, and the center is at f ¼ 0. The saddle fixed points will be connected to each other by a

pair of heteroclinic orbits.

Next, we will examine the leading order dynamics in an annular region near the resonance defined by

A0 ¼ fðZ;fÞj � Z1oZoZ1; f 2 ð0; 2pÞg,

and Z1 is chosen to be large enough to contain the homoclinic orbit. When the Oð
ffiffi
�
p
Þ perturbation is included in the

dynamics, the phase portrait of the integrable Hamiltonian unperturbed system will change. The perturbed equations

will have the form

Z0 ¼ �DfHþ
ffiffi
�
p

G ¼ Pðf; ZÞ,

f0 ¼ DZHþ
ffiffi
�
p

F ¼ Qðf; ZÞ.

In particular, the saddle point will persist due to the persistence of hyperbolic fixed points under small perturbation.

This new saddle point in the perturbed system will be denoted p�s. The center point pc may become either a source or a

sink. To determine which, we will employ Bendixson’s criterion. This criterion states that on a simply connected region

D, if the expression

T ¼ trace ¼
qP

qh
þ

qQ

qf

is not identically zero, and does not change sign, then there are no closed orbits lying entirely in D. Furthermore, if

To0, then pc will become a hyperbolic sink. The trace can be calculated from Eq. (20) and is given by

T ¼
ffiffi
�
p
ð2zd2 þ 8zf5I0Þ. Since d2o0 and I040, the trace To0 if f5o� d2=4I0. This condition will hold if f5o0. In

this case, the center pc will become a hyperbolic sink p�c.

In addition, the homoclinic orbit of the unperturbed system with saddle ps will be a good approximation to the basin

of attraction of the sink p�c (this homoclinic orbit will not generally persist under perturbation). We also denote the

‘‘nose’’ of this homoclinic orbit by fn. This nose can be determined by solving for fn in

Hð0;fnÞ ¼Hð0;fsÞ.

To determine whether an orbit is homoclinic to the sink p�c, we need to verify two conditions. First, we need to ensure

that orbits in the unstable manifold of p�c will return to the manifoldP�, i.e. W uðp�cÞ �W sðP�Þ. Thus, since we are trying

to determine whether we have an intersection of a stable and an unstable manifold, we require the calculation of a

Melnikov function. This Melnikov function calculates the distance between the two manifolds. A transverse zero of the

Melnikov function indicates an intersection of the two manifolds.

4.2.2. Calculation of Melnikov function

The form of this Melnikov function is given by

MðI0;fcÞ ¼

Z 1
�1

fhDxH0; g
xi þ ðDI H0 � g

I Þgdt,
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where the terms in the integrand are evaluated on the homoclinic orbit to the manifold P0 at the resonant value of

I ¼ I0, i.e. ðx
hðt; I0Þ; I0;f

h
ðt; I0;fcÞÞ. This integral can then be written as

MðI0;fcÞ ¼ �fH1ðt ¼ 1Þ �H1ðt ¼ �1Þg þ

Z 1
�1

fhDxH0; f
x
i þ ðDI H0 � f

I
Þgdt, (22)

where again, all terms in the integrand are calculated along the homoclinic orbit. First, we calculate DH1 ¼ H1ðt ¼

1Þ �H1ð�1Þ for the subharmonic case

DH1 ¼ H1ðt ¼ 1Þ �H1ðt ¼ �1Þ ¼ s4Iðcos 2fð1Þ � cos 2fð�1ÞÞ.

But we note that fð�1Þ ¼ fc and fð1Þ ¼ fc þ Df. Therefore, using fc ¼
1
2
sin�1ðzd2 þ 2zf5I0Þ=s4 we have

DH1 ¼ s4I0ðcos½2ðfc þ DfÞ� � cos 2fcÞ

¼ s4I0 cos 2Df

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

zd2 þ 2I0zf5

s4

� �2
s

� sin 2Df
zd2 þ 2I0zf5

s4

2
4

3
5

¼ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s24 � ðzd2 þ 2I0f5Þ

2
q

cos 2Df� I0ðzd2 þ 2I0zf5Þ sin 2Df.

The first integral in Eq. (22) can be evaluated using Green’s theorem asZ 1
�1

hDxH0; f
x
idt ¼

Z
A

ð2zd1 þ 4zf1I þ 16zf2y2Þdxdy

¼ � zð2d1 þ 4f1I0Þ
bDy

12a2ð1þ lÞ
þ ð16zf2Þ

b2Dy
30aa2ð1þ lÞ

,

where A is the area of the homoclinic orbit in the x–y plane. The second term in the integral of (22) can be evaluated asZ 1
�1

ðDI H0 � f
I
Þdt ¼ zð2d2I0 þ 4f5I2ÞDy�

8zfr
6bI

a
Dy. (23)

Adding all of these terms together, we obtain an expression for the Melnikov function as

MðI0;fcÞ ¼ �s4I0ðcos½2ðfc þ DfÞ� � cos 2fcÞ þ zKDy,

where

K ¼ �
bð2d1 þ 4f1I0Þ

12a2ð1þ lÞ
þ

16b2f2

30aa2ð1þ lÞ
þ ð2d2I0 þ 4f5I2Þ �

8fr
6bI

a
.

4.2.3. Calculation of phase condition

The second condition we need to check to see whether an orbit is homoclinic to the sink p�c is the phase condition.

Namely, we need to determine whether the orbit, when it returns to the manifold P�, falls within the basin of attraction

of the hyperbolic sink p�c. As we said earlier, the homoclinic orbit of the unperturbed system on the manifold P0 is a

good approximation to the basin of attraction of the hyperbolic sink. Thus, our phase condition can be expressed as

fsofð1Þofn,

where fð1Þ ¼ fc þ Df. If the phase condition is satisfied, and the Melnikov function has transverse zeros as well, then

we will have found an orbit homoclinic to the hyperbolic sink p�c. Having satisfied the Melnikov condition and the phase

condition, we now turn to Šilnikov’s theorem. This version of Šilnikov’s theorem is formulated in Deng (1993), and

discussed in great detail in Haller (1999).

Theorem 4.1 (Šilnikov, 1970). A four-dimensional system having a hyperbolic fixed point connected to itself by a

homoclinic orbit is to be examined. The matrix associated with the fixed point is given by

�r �o 0 0

o �r 0 0

0 0 �l 0

0 0 0 n

2
6664

3
7775, (24)
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where �r� io, ðr;o40Þ are the eigenvalues of the vector field restricted to A, where A � P is the annular region

containing the perturbed dynamics in ðZ; yÞ, and �l and n ðl; n40Þ are the linearized growth rates transverse to A. Assume

the following:
(i)
 rol and ron,

(ii)
 the homoclinic orbit is isolated,
(iii)
 the homoclinic orbit is tangent to the eigenspace corresponding to the eigenvalues �r� io, and
(iv)
 as time tends towards �1, points in the stable manifold of the homoclinic orbit should approach the strong stable

manifold.
If these four conditions are met, then a three-dimensional Poincaré map P defined near the homoclinic orbit has an invariant

Cantor set, on which P is topologically conjugate to a sub-shift of finite type on infinitely many symbols. Thus, the

perturbed flow will contain a countable set of Smale horseshoes.

For our system, the eigenvalues �r� io are Oð�Þ, while the eigenvalues �l and n are Oð1Þ. Therefore, we only need to

prove the existence of the homoclinic orbits, and show that lan to be able to apply the theorem.
4.3. Multi-pulse orbits in forced-damped pipe

In this section, we will determine the existence of multi-pulse orbits for the system. Our goal is to detect orbits of the

perturbed system which spend a lot of time near the slow manifold P�, but make orbits with several pulses away from

that slow manifold. In order to find multi-pulse orbits for the perturbed system, we will construct N-chains of single

pulse orbits in the unperturbed system ð� ¼ 0Þ to connect fixed points which are separated by a phase difference of Dy.
These orbits represent fast transitions between resonances, or a quick excursion from a resonance, returning to the same

solution, but with different phase. Now the N-pulse homoclinic orbits of the perturbed system will shadow the N-chains

we have already described.

First, we want to determine if the energy functions are chain-independent. To do this, we calculate the inner

product

hDH0; gijI¼I0
¼ � zxðd1xþ 2f1Ixþ 4f2xy2 þ 4fi

3Iyþ 8fi
4y3Þ

þ zðb1dyþ 32a1y3 þ 8a2IyÞðd1yþ 2f1Iyþ 4f2y3Þ þ zð4a2y2Þð2d2I þ 4f5I2 þ 8fr
6Iy2Þ.

Note that this inner product does not depend on f, and it is invariant under the transformation ðx; yÞ ! �x;�yð Þ.

These two facts allow us to conclude that the integral of this inner product will take the same value along any solution

in either of the two symmetrically located homoclinic manifolds.

We will describe in an abbreviated form how to detect these orbits. We need to examine the dynamics of the system in

two different regions:
(a)
 in a neighborhood of the invariant manifold M�, where the orbits spend a majority of the time, and where we can

use local estimates;
(b)
 away from the neighborhood of M�, where the orbits spend very little time, and where the local coordinates are not

defined. We will use the energy to track the orbits in this region.
First, examination of the dynamics of the system in a local neighborhood of the manifold M� requires many

approximations and technical details, described in Haller (1999), but which we will not go into here.

We determine the energy difference function for the forced-damped case. The dissipative energy function is given by

HD ¼ 2a3Z2 þ s4I0 cos 2f� ð2zd2I0 þ 4zf5I20Þf.

with equations of motion given by

_Z ¼ ð2zd2I0 þ 4zf5I20Þ þ 2hs4I0 sin 2f,
_y ¼ 4a3Z.
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Fig. 4. Phase portrait for dissipative system, HD.

R.J. McDonald, N. Sri Namachchivaya / Journal of Fluids and Structures 21 (2005) 665–687680
The fixed points of this system are given by

ðZc;fcÞ ¼ 0;
1

2
sin�1

zd2 þ 2zf5I0

s4

� �
,

ðZs;fsÞ ¼ 0;
p
2
�
1

2
sin�1

zd2 þ 2zf5I0

s4

� �
.

The phase portrait for this local Hamiltonian is shown in Fig. 4 for the case z ¼ 0:1, d2 ¼ �2, f5 ¼ 3, s4 ¼ 2, a3 ¼ �1,
and I0 ¼ 0:5.
Here, the analysis is restricted to cases for which jðzd2 þ 2zf5I0Þ=s4j 2 ð0; 1Þ in order to obtain physically meaningful

results. We also notice that the saddles in the present case are connected to themselves by homoclinic connections as

opposed to the purely Hamiltonian case where two saddles were connected by heteroclinic orbits. An annular region A

can be defined as before in the neighborhood of the resonant structure such that it contains all the essential dynamics of

the ðZ;fÞ phase space for the dissipative case,

A ¼ fðx; y; Z;fÞjx ¼ 0; y ¼ 0;�Z0oZoZ0;f 2 T1g, (25)

where Z0 is large enough that A contains the entire homoclinic orbit.

The higher order (dissipative) perturbations in this case act to change the dynamical structure in a profound way. We

can show that the trace of the linearization associated with the perturbed vector field is negative for z40, and thus the

hyperbolic saddles ðfsÞ persist as saddles ðf
�
sÞ and the elliptic centers ðfcÞ become hyperbolic sinks ðf�cÞ. The periodic

orbits surrounding the center ðfcÞ are all destroyed and the homoclinic orbit connecting ðfsÞ to itself is also broken,

with its unstable manifold asymptotically approaching the hyperbolic sink ðf�cÞ.

4.3.1. Energy difference function

In order to show the existence of multi-pulse homoclinic orbits, it is important to obtain the expression for the energy

difference function. The energy difference function is given by

DNHðfÞ ¼HðfþNDfÞ �HðfÞ �
XN

l¼1

Z 1
�1

hDH0; gijxl ðtÞ
dt. (26)

The first term in Eq. (26) was given earlier as

HðfþNDfÞ �HðyÞ ¼ s4I0½cos 2ðfþ DfÞ � cos 2f�. (27)

Applying Green’s theorem, the integral in Eq. (26) evaluates toZ 1
�1

hDH0; gijxl ðtÞ
dt ¼ s

Z
Al

rx;y � gx;yðx; y; I0; yÞdxdyþ

Z
qAl

gI ðxðyÞ; yðyÞ; I0; yÞdy, (28)

where Al is the domain in the ðx; yÞ plane which is encircled by the ðx; yÞ component of the solution xlðtÞ, and the

constant s ¼ �1 ensures that we have the right orientation on the boundary of the region Al . The first integrand is

independent of l, so we can select the homoclinic orbit in the right half of the ðx; yÞ plane for Al . The first integral in (28)
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can be simplified as

s
Z

Al

rx;y � gx;yðx; y; I0; yÞdxdy ¼ s
Z

A

d

dx
gxðx; y; I0;fÞ þ

d

dy
gyðx; y; I0;fÞ

� �
dxdy

¼ � sð2zd1 þ 4zf1IÞ
bDf
12a2
þ 16szf2

b2Df
30aa2

. ð29Þ

The third term in (28) is expressed as,Z
qAl

gI df ¼ 2zd2I þ 4zf5I2 �
8zfr

6bI

a

� �
Df. (30)

Thus, combining the results of Eqs. (27), (29) and (30) our energy function can be written in the more compact form

DNHðfÞ ¼ �2s4I0 sinð2fþNDfÞ sinNDfþNzKDf,

where

K ¼
def
¼
�bd1=6þ 8f2b2=15a

a2
þ �

bf1

3a2
� 2d2 þ

8fr
6b

a

� �
I0 � 4f5I20.

The zeros of DnHðfÞ are obtained by solving the expression

sinð2fþNDfÞ ¼
zNKDf

2s4I0 sin NDf
. (31)

We define a dissipation factor d ¼ z=s4. Since the right-hand side of the previous equation must have magnitude less

than 1, we have an upper bound on the value of the dissipation factor,

jdjodmax ¼
2I0

NKDf
j sin NDfj. (32)

Thus, N-pulse orbits for a given pulse number N are not possible for all values of the dissipation ratio d, unlike the case

of purely Hamiltonian perturbations. For small dissipation effects do1, we have an upper bound on the maximum

number of pulses

NoNmax ¼
2I0

jdjKDf
. (33)

It is apparent that the upper bound Nmax is inversely proportional to the value of the dissipation factor. Thus, the

infinite homoclinic tree breaks down into a finite tree even for very small values of the dissipation.

4.3.2. Zeros of the energy difference function

The transverse zeros of the dissipative energy difference function DNHðfÞ are given by the equation:

2fþNDf ¼ mpþ ð�1Þma, (34)

where m 2 Z, and

a ¼ sin�1
NdKDf

2I0 sin NDf
. (35)

If condition (32) is satisfied, then for any n satisfying NDfalp, 8l ¼ 0; 1; 2; . . ., there are two transverse zeros of the

dissipative energy difference function in the range f 2 ½�p=2; p=2�. Choosing the zeros in the range f 2 ½�p=2; p=2�, we
obtain

fN
�1 ¼

p
2
�

NDf
2
þ

a
2

� �
modp,

fN
�2 ¼

p
2
�

p
2
þ

NDf
2
�

a
2

� �
modp. ð36Þ

We introduce the NDf translates of the two zeros given above

fN
þ1 ¼ ½f

N
þ1 þNDf�mod2p,

fN
þ2 ¼ ½f

N
þ2 þNDf�mod2p, ð37Þ
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and define the two sets

Ẑ
N

� ¼ fðZ;fÞ 2Ajf 2 ffN
�1;f

N
�2gg,

Ẑ
N

þ ¼ fðZ;fÞ 2Ajf 2 ffN
þ1;f

N
þ2gg. ð38Þ

In a manner similar to the Hamiltonian case, we can consider a domain E1 2A enclosed inside the homoclinic orbit

located in the interval f 2 ½fs;fs
þ p�. This domain is filled with periodic orbits which can be classified based on their

pulse number. In this case, the energy sequence is defined as

h0 ¼Hgð0;fsÞ ¼ �I0hs4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
ðzd2 þ 2zf5I0Þ

2

s24

s
þ I0ðzd2 þ 2zf5I0Þð2fs �DÞ,

hn ¼ min½Hgð0;f
n
�1Þ;Hgð0;f

n
�2Þ�,

h1 ¼Hgð0;fcÞ ¼ I0hs4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�
ðzd2 þ 2zf5I0Þ

2

s24

s
þ I0ðzd2 þ 2zf5I0Þð2fc �DÞ, ð39Þ
Table 1

Calculation of energy levels hn and layer radii rn in forced and damped system for Df ¼ 1:2

fn
�1 Hð0;fn

�1Þ fn
�2 Hð0;fn

�2Þ hn Layer # rn

n ¼ 1 0:919 �0:356s4I0 �0:548 0:511s4I0 0:511s4I0 1 0:523
n ¼ 2 0:227 0:876s4I0 �1:056 �0:409s4I0 0:876s4I0 2 0:252
n ¼ 3 0:125 0:956s4I0 0:987 �0:492s4I0 0:956s4I0 3 0:150
n ¼ 4 �0:631 0:366s4I0 0:543 0:410s4I0 0:410s4I0 n/a 0:569
n ¼ 5 Condition (32) is not satisfied

n ¼ 6 0:706 0:087s4I0 �0:052 1:000s4I0 1:000s4I0 6 0:027
n ¼ 7 0:060 0:987s4I0 �0:606 0:412s4I0 0:987s4I0 n/a 0:085
n ¼ 8 Condition (32) is not satisfied

n ¼ 9 �0:149 0:971s4I0 0:344 0:738s4I0 0:971s4I0 n/a 0:124
n ¼ 10 Condition (32) is not satisfied

n ¼ 11 Condition (32) is not satisfied
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Fig. 5. Calculation of the layer sequence for Df ¼ 1:2.
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such that 0ono1, and hn gives the energy level associated with an orbit closer to the center. As for the Hamiltonian

case, the energy increases as one moves towards the center fixed point. The open sets of internal orbits fĀng, pulse

sequence fNkg, layer sequence fLNk
g are defined in the same manner as the nondissipative case. A sample calculation for

these energy levels and layer radii is given in Table 1 for Df ¼ 1:2, z ¼ 0:1, d2 ¼ �2, f5 ¼ 3, a3 ¼ �1, I0 ¼ 0:5 and

K ¼ 1:6. Note from condition (33) that NoNmax ¼ 10:4. Thus, we know a priori that there cannot be pulse numbers

greater than N ¼ 10 for this problem. We also note that for n ¼ 5; 8; 10; 11; . . .f g, the limit on the damping, condition

(32), is not satisfied. For these values of n then, the energy difference function does not have real zeros. Finally, we can

see from the table that the system only has pulse numbers N ¼ 1; 2; 3; 6f g at this set of parameters. We have also

calculated the layer radii for the different layers. For these layers, the inner angular radii is given by

rNk
¼ min½jfc � fNk

�1 j; jfc � fNk
�2 j�, (40)

where fNk
�1 and fNk

�2 are given in Eq. (36). The zeros of the energy difference function and the layer sequence are also

shown in Fig. 5 for the same parameter values. Note that the heteroclinic orbits for the Hamiltonian case are now

homoclinic orbits, and the center fixed point is no longer at f ¼ 0. The area inside the homoclinic orbit is split into five

regions. In L1, 1-pulse orbits are possible, in L2, 2-pulse orbits are possible, in L3, 3-pulse orbits are possible, and in L6,

6-pulse orbits are possible. There is also a small region contained within L6 in which no multi-pulse orbits are possible.

It should be noted that all of these sequences are finite in the dissipative case. Thus, for any orbit g 2 LNk
, we have the

associated pulse number NðgÞ ¼ Nk.

The distribution of the pulse numbers and the layer radii are obtained by a recursive calculation, and is very sensitive

to changes in system parameters. These distributions are shown in Figs. 6 and 7 for several values of the damping z, and
Fig. 6. Pulse numbers Nk as a function of the phase shift Df for several values of damping z: (a) z ¼ 0:001; (b) z ¼ 0:005; (c) z ¼ 0:01;
(d) z ¼ 0:05; (e) z ¼ 0:1; (f) z ¼ 0:5.
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Fig. 7. Layer radii rNk
as a function of the phase shift Df for several values of damping z: (a) z ¼ 0:001; (b) z ¼ 0:005; (c) z ¼ 0:01; (d)

z ¼ 0:05; (e) z ¼ 0:1; (f) z ¼ 0:5.
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for pulse numbers up to N ¼ 20. Higher pulse numbers are possible, but as the pulse number increases, the range of Df
in which that pulse number is found becomes smaller and smaller. Except for the damping, these plots use the same

parameter values as in Table 1, namely d2 ¼ �2, f5 ¼ 3, a3 ¼ �1, I0 ¼ 0:5 and K ¼ 1:6. Note that as the damping

increases, the distribution starts to break down further. In particular, the higher pulse orbits begin to disappear for

higher values of Df as z is increased, while the number of multi-pulse orbits for small values of Df seems to increase.

For z ¼ 0:5, multi-pulse orbits only exist for small values of Df. The layer radii distribution, rNk
, shows a similar

breakdown as the damping is increased. The layer radii seem to increase near Df ¼ fp=4; p=2; 3p=4; pg and other values

of p=N. The pulse number is undefined at values of the phase shift given by Df ¼ p=k, where k is an integer. These

values of Df correspond to resonant values of the phase shift, and the present methods will not work in this case. See

Haller (1999) for more details on this case.
4.4. Detection of homoclinic orbits to saddle-sinks

In the Hamiltonian perturbation case, the existence of multi-pulse orbits implies that they are homoclinic to internal

periodic orbits in the slow manifold P�. However, in the dissipative case there are no such internal periodic orbits that

lie on the slow manifold, and the center-type fixed point becomes a hyperbolic sink (or a saddle focus in the full four-

dimensional phase space) due to the dissipative perturbations. Thus, in this case we look for multi-pulse orbits that are

homoclinic to the saddle focus, i.e. Šilnikov-type multi-pulse orbits that are negatively and positively asymptotic to the

saddle focus itself. The idea of N-pulse Šilnikov orbits is very similar to the single-pulse Šilnikov orbit. In an analogous
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manner, the presence of N-pulse Šilnikov orbits leads to chaotic dynamics in the sense of Smale horseshoes. In order to

determine the existence of such orbits, we apply Theorem 2.8.2 of Haller (1999).

First, we require the existence of a nondegenerate equilibria forHg. In the reduced ðZ;fÞ phase space, this fixed point

is given by

pc ¼ ðZc;fcÞ ¼ 0;
1

2
sin�1

zd2 þ 2zf5I0

hs4

� �
¼ 0;

1

2
sin�1dðd2 þ 2f5I0Þ

� �
. (41)

Next, we need to compute the zeros of the dissipative energy difference function at the saddle center at ð0; 0; 0;fcÞ in

ðx; y; Z;fÞ phase space. The zeros of DNHgðfcÞ are obtained by solving the equation

DNHgðfcÞ ¼ �2hs4I0 sinð2fc þNDfÞ sin NDfþ zNKDf ¼ 0, (42)

which yields

dðNKDf� I0ðd2 þ 2f5I0Þ sin 2NDfÞ ¼ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

ðd2 þ 2f5I0Þ
2

q
ð1� cos 2NDfÞ. (43)

Solving Eq. (43) for the dissipation parameter d, we obtain which yields

d ¼
z
s4
¼

1� cos 2NDfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2 þ 2f5I0Þ

2
ð1� cos 2NDfÞ2 þ ðNKDf=I0 � ðd2 þ 2f5I0Þ sin 2NDfÞ2

q . (44)

This result is only valid when the damping is nonzero, i.e.

Dfa
mp
N
; m 2 Z. (45)

We also need to satisfy the two nondegeneracy conditions

DdDNHgðfcÞa0 and Dfc
DNHgðfcÞa0, (46)

whenever Eqs. (44) and (45) are satisfied. The first condition in Eq. (46) can be rewritten as

Dd cos p� sin�1
d

2
þ 2NDf2

� �
� cos p� sin�1

d

2

� �
þ

6nd

1þ s=b
tan

Df2

2

� �
a0. (47)

After some simplification, we see that this condition is violated only ifffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

d2

4

s
sin 2NDf2 �

12N tanDf2=2

1þ s=b

� �
¼

d

2
ðcos 2NDf2 � 1Þ. (48)

Obviously, conditions (43) and (48) cannot both be satisfied if Eq. (45) is also satisfied. The second nondegeneracy

condition in Eq. (46) is satisfied by the existence of transversal zeros of DNĤD, and is thus satisfied by inequality (32).

Finally, we need to insure that the landing point of any N-pulse orbit taking off from a slow sink lies in the domain of

attraction of one of the sinks. We first define a point which is in the interval ½0; p�, and is kp apart from the approximate

landing point, fc þNDf. We denote this point by

fN
� ¼ fs þ ½fc þNDf� fs�modp, (49)

where we recall that

fc
¼

p
2
�

1

2
sin�1

d

2
; fs

¼
1

2
sin�1

d

2
. (50)

If fN
�ofs, then we redefine fN

� by adding p to its value. Our goal here is to find kp-translate of the landing point which

is closest (on the right-hand side) to the saddle point fc in our domain of interest 0; pð Þ. This point is denoted by fN
� .

Due to the symmetry of the phase portrait f! fþ p, if the energy of this point, fN
� , is greater than the energy of the

saddle point, i.e.

HDð0;fN
� ÞoHDð0;fs

Þ, (51)

then for �40 small enough, the landing point fþNDfc will be in the domain of attraction of one of the sinks. This

energy condition (51) is evaluated as

cos 2fN
� � cos 2fsodðfs

� fN
� Þ. (52)
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The parameter set for which multi-pulse Šilnikov orbits may exist is shown in Fig. 8 for pulse numbers Np20, and

z ¼ 0:1, d2 ¼ �2, f5 ¼ 3, a3 ¼ �1, I0 ¼ 0:5 and K ¼ 1:6, i.e. the same conditions that were used earlier. This figure was

plotted by first plotting (44) for the pulse numbers up to N ¼ 20, and then removing the parts of the curve for which the

phase condition was violated.
5. Conclusions

We can now summarize the results of the global bifurcation analysis. In this paper, we detected the presence of orbits

which are homoclinic to certain invariant sets on the slow manifold P� for the resonant case. In the dissipative case, we

were able to identify conditions under which a generalized Šilnikov orbit would exist. Under such conditions, the system

would undergo chaotic dynamics in the sense of Smale horseshoes.

In studying a real physical system, one should be mindful of the sensitivity of these multi-pulse orbits to changes in

system parameters. Since uncertainties always exist in real engineering systems, it would be unwise to use the results of

this paper to attempt to precisely predict where multi-pulse orbits with a certain number of pulses might occur. For

example, one should not look at Fig. 6 and attempt to conclude that, say, 10-pulse orbits exist for a certain set of system

parameters. The important conclusion to draw from this paper is that in certain parameter regions, several families of

multi-pulse orbits, with different numbers of pulses, are likely to occur, and that this pulse distribution is likely to

change drastically with small changes in system parameters. In addition, the multi-pulse orbits homoclinic to the saddle

focus points p�c only exist on co-dimension one sets in the parameter space. However, the horseshoes that they generate

are structurally stable, and thus the system will admit Smale horseshoes in its dynamics in an open neighborhood of the

plot given in Fig. 8.

Next, we would like discuss a synthesis of the local and global bifurcation results. Unfortunately, such an integration

of these two sets of results is not entirely possible, since different assumptions and scalings were made in each of these

analyses. For example, in the local bifurcation analysis (McDonald and Namachchivaya, 2005), the presence of the

subharmonic forcing allowed for the creation of second mode solutions, in addition to the first mode solutions created

by the symmetry breaking. The first mode solutions have an analogue in the global analysis for I2 ¼ 0, as the center

fixed points that bifurcate from the trivial solution and are surrounded by the homoclinic orbits in the x–y plane. It is

more difficult to find an analogue in the global analysis to the second mode solutions that bifurcate from the trivial

solution. In the global analysis, the damping and forcing terms are regarded as perturbations, and scaled to Oð�Þ. We

then study the dynamics of the unperturbed system, for which _I ¼ 0 identically. If we scale the damping and forcing to

Oð�Þ in the second mode solutions found in the local analysis in McDonald and Namachchivaya (2005), then these two

second mode solutions reduce to one solution, which is identical to the resonant value of I2 given in Section 4. Thus, the

resonant value of I2 corresponds roughly to the second mode solutions in the local analysis. The multi-mode solutions

from the local analysis then correspond to a transfer of energy from the second mode solutions to the first mode

solutions, and vice versa. Again, if damping and forcing are scaled to Oð�Þ, then the existence criterion of these multi-

mode solutions is equivalent to the conditions in the global analysis that a homoclinic orbit exists (i.e. the plane P0 is

unstable), and a resonance exists on P0. Thus, both the local and global analysis gives essentially the same information
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about where energy transfer may occur between the two modes. The advantage of the global analysis is that it allows us

to study how the energy is transferred between the modes, which in this case may be through the presence of chaotic

dynamics near the multi-pulse orbits.
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